秦朝末年,楚汉相争。有一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更认为韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步逼近,楚军乱作一团。交战不久,楚军大败而逃。

 

算法:
  1.先算3、5、7的最小公倍数3*5*7=105 
 
  2.再算符合除以3余2,除以5余3,除以7余2的最小值
  除以3余2的数:5, 8, 11, 14, 17, 20, 23, 26… 
  除以5余3的数:8, 13, 18, 23, 28…
  除以7余2的数:9,16,23,30…
  由上得出除以3余2,除以5余3,除以7余2的最小值为23
 
  3.韩信原有1500名士兵,苦战一场死伤四五百。现剩余士兵应在1000-1100之间,并且现存的士兵数应可以被105整除并且余数是23.所以现存士兵数应该是105×10+23=1073人。
中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?” 
 
答曰:“二十三。” 
 
术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”
 
什么意思呢?用现代语言说明这个解法就是: 
  
首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。如果所求的数被3除余2,那么就取数70×2=140,140是被5与7整除而被3除余2的数。如果所求数被5除余3,那么取数21×3=63,63是被3与7整除而被5除余3的数。如果所求数被7除余2,那就取数15×2=30,30是被3与5整除而被7除余2的数。
 
140+63+30=233,由于63与30都能被3整除,所以233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。 105是3、5、7的公倍数,前面说过,凡是满足233加减105的整数倍的数都是符合题意的,因此依定理译成算式解为:
  70×2+21×3+15×2=233
  233-105×2=23
 
这就是有名的“中国剩余定理”,或称“孙子定理”,它和韩信点兵是一个道理。