如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为( )
.
【解答】解:∵四边形ABCD是矩形,点G是DF的中点,
∴AG=DG,
∴∠ADG=∠DAG,
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG=4,
在Rt△ABE中,AB=根号15.
本题重点∠AED=2∠CED,可以考虑把∠AED平分或者找一个角等于2∠CED,这样就不是很难想到解法了!
最新讨论